首页> 外文期刊>Neurocomputing >A survey on metaheuristic optimization for random single-hidden layer feedforward neural network
【24h】

A survey on metaheuristic optimization for random single-hidden layer feedforward neural network

机译:随机单隐层前馈神经网络元启发式优化研究

获取原文
获取原文并翻译 | 示例

摘要

Random single-hidden layer feedforward neural network (RSLFN) is currently a popular learning algorithm proposed for improving traditional gradient-based model due to its fast learning speed and acceptable performance. For RSLFN, the input weights and/or other parameters are randomly initialized, and the other ones are iteratively or non-iteratively trained. However, the performance of RSLFN is sensitive to the number of hidden neurons and randomly initialized parameters. Numerous methods have been successfully employed to improve the RSLFN from various perspectives. Because of their favourable search ability, metaheuristic optimization approaches gradually attract more and more attentions. Metaheuristic algorithms usually formulate the random parameters of RSLFN into an optimization model, and then provide a near-optimum solution which could be converted into RSLFN with better generalization performance. The hybrid method for optimizing RSLFN therefore shows considerable potential in intelligent computing and artificial intelligence. However, there is no comprehensive survey on RSLFN with metaheuristic in the research area, which ultimately leads to lost opportunities for an advancement. This paper firstly introduces the basic principles of RSLFN along with several metaheuristic algorithms. Secondly, it provides a comprehensive survey of the state-of-the-art contributions in the area. Finally, current challenges are highlighted and promising research directions are also presented. (C) 2018 Elsevier B.V. All rights reserved.
机译:随机单隐藏层前馈神经网络(RSLFN)由于其快速的学习速度和可接受的性能,目前是一种流行的学习算法,用于改进传统的基于梯度的模型。对于RSLFN,将随机初始化输入权重和/或其他参数,并对其他权重进行迭代或非迭代训练。但是,RSLFN的性能对隐藏神经元的数量和随机初始化的参数敏感。从各种角度来看,已经成功采用了许多方法来改进RSLFN。由于其良好的搜索能力,元启发式优化方法逐渐引起越来越多的关注。元启发式算法通常将RSLFN的随机参数公式化为一个优化模型,然后提供一个接近最佳的解决方案,可以将其转换为具有更好泛化性能的RSLFN。因此,用于优化RSLFN的混合方法在智能计算和人工智能中显示出巨大潜力。但是,在研究领域,还没有关于具有元启发法的RSLFN的全面调查,最终导致失去了发展的机会。本文首先介绍了RSLFN的基本原理以及几种元启发式算法。其次,它提供了对该地区最新技术贡献的全面调查。最后,重点介绍了当前的挑战,并提出了有希望的研究方向。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号