首页> 外文期刊>Expert Systems with Application >On the comparison of random and Hebbian weights for the training of single-hidden layer feedforward neural networks
【24h】

On the comparison of random and Hebbian weights for the training of single-hidden layer feedforward neural networks

机译:随机权重和Hebbian权重在单隐藏层前馈神经网络训练中的比较

获取原文
获取原文并翻译 | 示例

摘要

4 In this paper, we provide an experimental study for two unsupervised processes, namely, the random initialization and the Hebbian learning, which can be used to determine the input weights in Single-hidden Layer Feedforward Neural Networks (SLFNs). In addition, a fusion technique that combines the two feature spaces is proposed. Experiments are conducted on six publicly available facial image datasets. Experimental results show that the proposed fusion technique can improve the performance of Hebbian and random feature spaces when they achieve similar performance. In the cases where the difference in performance of the two feature spaces is high, the proposed fusion scheme preserves the power of the most discriminating one and outperforms the average fused feature space. The experimental results show that there is a trade-off between the generalization of the Hebbian feature space and the low computational cost of the random one. (C) 2017 Elsevier Ltd. All rights reserved.
机译:4在本文中,我们对两个无监督过程进行了实验研究,即随机初始化和Hebbian学习,可用于确定单隐藏层前馈神经网络(SLFN)中的输入权重。另外,提出了一种结合两个特征空间的融合技术。在六个公开的面部图像数据集上进行了实验。实验结果表明,所提出的融合技术在达到相似性能时可以改善Hebbian和随机特征空间的性能。在两个特征空间的性能差异很大的情况下,所提出的融合方案保留了最有区别的特征的能力,并且胜过了平均融合特征空间。实验结果表明,在Hebbian特征空间的泛化和随机变量的低计算成本之间存在折衷。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号