首页> 外文期刊>Neurocomputing >D~3-LND: A two-stream framework with discriminant deep descriptor, linear CMDT and nonlinear KCMDT descriptors for action recognition
【24h】

D~3-LND: A two-stream framework with discriminant deep descriptor, linear CMDT and nonlinear KCMDT descriptors for action recognition

机译:D〜3-LND:具有区分深度描述符,线性CMDT和非线性KCMDT描述符的两流框架,用于动作识别

获取原文
获取原文并翻译 | 示例

摘要

In order to improve recognition accuracy, a two-stream framework which incorporates deep-learned stream and hand-crafted stream is proposed. Firstly, a discriminant nonlinear feature fusion method is proposed, which introduces the category structure information and obtains the nonlinear relationships between features. Secondly, the global features and local features are extracted from deep network, both of them are fused by the proposed fusion method to obtain a discriminant deep descriptor. Thirdly, to capture the spatio-temporal characteristics of video, the temporal derivatives of gradient, optical flow and motion boundary are extracted in the space-time cube centered at trajectory and taken as low-level features. Subsequently, the covariance and kernelized covariance of low-level features are respectively computed to obtain the Covariance Matrix based on Dense Trajectory (CMDT) and Kernelized Covariance Matrix based on Dense Trajectory (KCMDT) descriptors. Finally, a two-stream framework with discriminant deep descriptor, linear CMDT and nonlinear KCMDT descriptors (D-3-LND) is presented, which shares the benefits of both deep-learned and hand-crafted features, and further improves recognition accuracy. Experiments on challenging HMDB51 and UCF101 datasets verify the effectiveness of our method. (C) 2018 Elsevier B.V. All rights reserved.
机译:为了提高识别精度,提出了一种结合了深度学习流和手工流的两流框架。首先,提出了一种判别式非线性特征融合方法,该方法引入了类别结构信息,得到了特征之间的非线性关系。其次,从深度网络中提取全局特征和局部特征,并通过所提出的融合方法将两者融合,以得到判别式深度描述符。第三,为了捕获视频的时空特征,在以轨迹为中心的时空立方体中提取梯度,光流和运动边界的时间导数,并将其作为低级特征。随后,分别计算低级特征的协方差和核化协方差,以获得基于密集轨迹(CMDT)的协方差矩阵和基于密集轨迹(KCMDT)描述符的核化协方差矩阵。最后,提出了具有区分性的深度描述符,线性CMDT和非线性KCMDT描述符(D-3-LND)的两流框架,该框架共享了深度学习和手工制作的优点,并进一步提高了识别精度。在具有挑战性的HMDB51和UCF101数据集上进行的实验证明了我们方法的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号