首页> 外文期刊>Neurocomputing >Semantically enhanced network analysis for influencer identification in online social networks
【24h】

Semantically enhanced network analysis for influencer identification in online social networks

机译:语义增强网络分析,用于在线社交网络中的影响者识别

获取原文
获取原文并翻译 | 示例

摘要

Influencers in a social network are members that have greater effect in the online social network (OSN) than the average member. In the specific social networks known as communities of practice, where the focus is an specific area of knowledge, influencers are key for the healthy working of the OSN. Approaches to influencer detection using graph analysis of the network can be mislead by the activity of users that are not contributing to the OSN purpose, bogus generators of documents with no relevant information. We propose the use of semantic analysis to filter out such kind of interactions, achieving a simplified graph representation that preserves the main features of the OSN, allowing the detection of true influencers. Such simplification reduces computational costs and removes bogus influencers. We demonstrate the approach applying fuzzy concept analysis (FCA) and latent Dirichlet analysis (LDA) to compute document similarity measures that allow to filter out irrelevant interactions. Experimental results on a community of practice are reported.
机译:社交网络中的影响者是在网络社交网络(OSN)中具有比普通成员更大的影响的成员。在称为实践社区的特定社交网络中,重点是特定的知识领域,影响者是OSN健康工作的关键。使用网络图形分析来进行影响者检测的方法可能会误导那些对OSN用途没有帮助的用户活动,即没有相关信息的虚假文档生成器。我们建议使用语义分析来过滤出此类交互,从而获得保留OSN主要特征的简化图形表示形式,从而检测出真正的影响者。这种简化减少了计算成本,并消除了伪造的影响因素。我们演示了应用模糊概念分析(FCA)和潜在Dirichlet分析(LDA)来计算文档相似性度量的方法,该度量允许过滤掉不相关的交互。报告了在一个实践社区的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号