首页> 外文期刊>Neurocomputing >Four actor-critic structures and algorithms for nonlinear multi-input multi-output system
【24h】

Four actor-critic structures and algorithms for nonlinear multi-input multi-output system

机译:非线性多输入多输出系统的四种行为准则结构和算法

获取原文
获取原文并翻译 | 示例

摘要

The action-dependent heuristic approximate dynamic (ADHDP) for nonlinear multi-input multi-output (MIMO) system needs different forms to adapt to variable practical objects. Due to some inappropriate network structure or training algorithm, unsuccessful designs or undesirable control effect is common in reality. Thus, at first, this paper addresses the chain rule problem of the compound derivative in training the nonlinear MIMO ADHDP. Then, this paper researches and proposes four actor-critic algorithms systematically according to four typical nonlinear systems. That is, the action-network extension, the sub-network, the cascaded action-network and the combined method. To illustrate the four methods, their detailed structures, derivation procedures and training algorithms are derived. The Lyapunov stability for the nonlinear MIMO ADHDP is proved as well. Through examples of an idling engine and aircraft controlling, the simulation results show the effectiveness of these methods. Besides, the property, advantages, disadvantages and the applicability of these methods are compared and highlighted. The four methods can be used to meet the design requirement of almost all the nonlinear MIMO ADHDP control systems. For incoming scholars in search of a nonlinear MIMO ADHDP to achieve the best control effect, the four actor-critic structures and algorithms can be a reference. (C) 2018 Elsevier B.V. All rights reserved.
机译:非线性多输入多输出(MIMO)系统的与动作有关的启发式近似动态(ADHDP)需要不同的形式以适应可变的实际对象。由于某些不适当的网络结构或训练算法,实际上设计不成功或控制效果不理想。因此,首先,本文讨论了在训练非线性MIMO ADHDP时复合导数的链规则问题。然后,针对四种典型的非线性系统,系统地研究提出了四种行为批评算法。即,动作网络扩展,子网,级联动作网络和组合方法。为了说明这四种方法,推导了它们的详细结构,推导过程和训练算法。还证明了非线性MIMO ADHDP的Lyapunov稳定性。通过空转发动机和飞机控制的实例,仿真结果表明了这些方法的有效性。此外,比较并突出了这些方法的性质,优点,缺点和适用性。可以使用这四种方法来满足几乎所有非线性MIMO ADHDP控制系统的设计要求。对于正在寻求非线性MIMO ADHDP以获得最佳控制效果的新进学者,这四个参与者评判结构和算法可以作为参考。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号