首页> 外文期刊>Neurocomputing >Digging into it: Community detection via hidden attributes analysis
【24h】

Digging into it: Community detection via hidden attributes analysis

机译:深入探讨:通过隐藏属性分析进行社区检测

获取原文
获取原文并翻译 | 示例

摘要

Identifying community structure in complex systems is essential for characterizing and understanding their functions and properties. Over the past decades, considerable efforts have been devoted to analyzing the community structure of networks and numerous community detection methods have consequently been developed. Among the proposed methods, none of them has explored the community membership in depth, which may provide useful information about the nodes and the communities. In this paper, we name the information contained in the community membership as hidden attributes of nodes and communities, and design a delicate nonnegative matrix factorization (a widely used framework for both disjoint and overlapping community detection) based model to extract the hidden attributes and use these hidden attributes to modify the community detection results on unannotated networks. To test our model's expansibility, we also extend it on annotated networks by adding observed nodes' attributes into it. Experiment results on both unannotated and annotated real-world networks show superior performance of our model over state-of-the-art approaches. (C) 2018 Elsevier B.V. All rights reserved.
机译:识别复杂系统中的社区结构对于表征和理解其功能和特性至关重要。在过去的几十年中,已经投入了大量的精力来分析网络的社区结构,因此开发了许多社区检测方法。在提出的方法中,没有一个方法深入探讨了社区成员资格,这可能会提供有关节点和社区的有用信息。在本文中,我们将包含在社区成员身份中的信息命名为节点和社区的隐藏属性,并设计基于微妙的非负矩阵分解(广泛用于不相交和重叠社区检测的框架)的模型,以提取隐藏属性并使用这些隐藏的属性可修改未注释网络上的社区检测结果。为了测试模型的可扩展性,我们还通过在其中添加了观察到的节点的属性,在带注释的网络上扩展了模型。在无注释和带注释的真实世界网络上的实验结果表明,我们的模型优于最新方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|97-107|共11页
  • 作者单位

    Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China|Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China|Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China|Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China|Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Community detection; Nonnegative matrix factorization; Hidden attributes; Digging into it;

    机译:社区检测;负矩阵分解;隐藏属性;挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号