首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Exponentially Twisted Sampling for Centrality Analysis and Community Detection in Attributed Networks
【24h】

Exponentially Twisted Sampling for Centrality Analysis and Community Detection in Attributed Networks

机译:归因网络中集中度分析和社区检测的指数扭曲采样

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we conduct centrality analysis and community detection for attributed networks. An attributed network, as a generalization of a graph, has node attributes and edge attributes that represent the "features" of nodes and edges. Traditionally, centrality analysis and community detection of a graph are done by providing a sampling method, such as a random walk, for the graph. To take node attributes and edge attributes into account, the sampling method in an attributed network needs to be twisted from the original sampling method in the underlining graph. For this, we consider the family of exponentially twisted sampling methods and propose using path measures to specify how the sampling method should be twisted. For signed networks, we define the influence centralities by using a path measure from opinions dynamics and the trust centralities by using a path measure from a chain of trust. For attributed networks with node attributes, we also define advertisement-specific influence centralities by using a specific path measure that models influence cascades in such networks. For networks with a distance measure, we define the path measure as the total distance along a path. By specifying the desired average distance between two randomly sampled nodes, we are able to detect communities with various resolution parameters. Various experiments are conducted to further illustrate these exponentially twisted sampling methods by using three real datasets: the political blogs, the MemeTracker dataset, and the WonderNetwork.
机译:在本文中,我们对属性网络进行集中性分析和社区检测。作为图的概括,属性网络具有表示节点和边的“特征”的节点属性和边属性。传统上,通过为图提供采样方法(例如随机游走)来完成图的集中度分析和社区检测。为了考虑节点属性和边缘属性,属性网络中的采样方法需要与下划线图中的原始采样方法有所不同。为此,我们考虑了指数扭曲采样方法系列,并建议使用路径测量来指定应如何扭曲采样方法。对于签名网络,我们使用意见动态的路径度量来定义影响中心,而使用信任链的路径度量来定义信任中心。对于具有节点属性的属性网络,我们还通过使用模型来影响此类网络中的级联的特定路径度量,来定义特定于广告的影响中心。对于具有距离度量的网络,我们将路径度量定义为沿路径的总距离。通过指定两个随机采样节点之间的期望平均距离,我们能够检测具有各种分辨率参数的社区。通过使用三个真实的数据集:政治博客,MemeTracker数据集和WonderNetwork,进行了各种实验以进一步说明这些指数扭曲的采样方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号