首页> 外文期刊>Neurocomputing >Bio-inspired fault detection circuits based on synapse and spiking neuron models
【24h】

Bio-inspired fault detection circuits based on synapse and spiking neuron models

机译:基于突触和尖峰神经元模型的生物启发式故障检测电路

获取原文
获取原文并翻译 | 示例

摘要

Recent studies have shown that the electronic hardware devices can be compromised by the faults and fault tolerance is a crucial capability. This paper addresses the challenge of fault detection in the CMOS circuits, using two bio-inspired structures based on the HP lab's memristor and the BSIM3v3.2.2 transistor models. The first fault detection circuit (FDC) includes the memristor-based synapses and a modified leaky integrate-and-fire (LIF)-based neuron. The memristor-based synapse circuits can be further optimized which is the proposed second fault detection method (O-FDC), and it has a lower hardware overhead and power consumption compared to the former. Experimental results demonstrate that the proposed structures can detect the circuit faults under the inputs of direct current (DC), alternating current (AC) voltage sources, and pulse signals. Under the input of DC, the fault detection times for the two proposed structures are about 0.16 ms and 1.2 ms, respectively; when the input source is AC, the corresponding fault detection times are about 0.206 ms and 0.758 ms; and it takes only 6.47us for fault detection under the input of pulse signals. This work provides an alternative solution to enhance the fault-tolerant capability of the hardware systems. (C) 2018 Elsevier B.V. All rights reserved.
机译:最近的研究表明,电子硬件设备可能会受到故障的影响,而容错能力是至关重要的。本文使用两种基于惠普实验室忆阻器和BSIM3v3.2.2晶体管模型的生物启发结构,解决了CMOS电路中故障检测的挑战。第一故障检测电路(FDC)包括基于忆阻器的突触和经过修改的基于泄漏集成点火的(LIF)神经元。可以进一步优化基于忆阻器的突触电路,这是提出的第二种故障检测方法(O-FDC),与前一种方法相比,它具有较低的硬件开销和功耗。实验结果表明,所提出的结构能够检测直流输入,交流电压源和脉冲信号输入下的电路故障。在直流输入下,两种结构的故障检测时间分别约为0.16 ms和1.2 ms。当输入源为交流电时,相应的故障检测时间分别为0.206ms和0.758ms。在脉冲信号输入下,故障检测仅需6.47us。这项工作为增强硬件系统的容错能力提供了一种替代解决方案。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|473-482|共10页
  • 作者单位

    Guangxi Normal Univ, Fac Elect Engn, Guilin 541004, Peoples R China;

    Guangxi Normal Univ, Fac Elect Engn, Guilin 541004, Peoples R China;

    Guangxi Normal Univ, Fac Elect Engn, Guilin 541004, Peoples R China;

    Ulster Univ, Sch Comp Engn & Intelligent Syst, Coleraine BT48 7JL, Londonderry, North Ireland;

    Ulster Univ, Sch Comp Engn & Intelligent Syst, Coleraine BT48 7JL, Londonderry, North Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault detection; Memristor; Memristive synapses; Spiking neuron model;

    机译:故障检测;忆阻器;忆阻突触;尖峰神经元模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号