首页> 外文期刊>Neurocomputing >Topical Co-Attention Networks for hashtag recommendation on microblogs
【24h】

Topical Co-Attention Networks for hashtag recommendation on microblogs

机译:主题共同关注网络,在微博上推荐主题标签

获取原文
获取原文并翻译 | 示例

摘要

Hashtags provide a simple and natural way of organizing content in microblog services. Along with the fast growing of microblog services, the task of recommending hashtags for microblogs has been given increasing attention in recent years. However, much of the research depends on hand-crafted features. Motivated by the successful use of neural models for many natural language processing tasks, in this paper, we adopt an attention based neural network to learn the representation of a microblog post. Unlike previous works, which only focus on content attention of microblogs, we propose a novel Topical Co-Attention Network (TCAN) that jointly models content attention and topic attention simultaneously, in the sense that the content representation(s) are used to guide the topic attention and the topic representation is used to guide content attention. We conduct experiments and test with different settings of TCAN on a large real-world dataset. Experimental results show that our model significantly outperforms various competitive baseline methods. Furthermore, the incorporation of topical co-attention mechanism gives more than 13.6% improvement in F1 score compared with the standard LSTM based methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:标签为组织微博服务中的内容提供了一种简单自然的方法。随着微博客服务的快速增长,近年来,为微博客推荐标签的任务已引起越来越多的关注。但是,许多研究取决于手工制作的功能。由于成功地将神经模型用于许多自然语言处理任务,因此本文采用基于注意力的神经网络来学习微博帖子的表示。与以前的仅关注微博内容关注的作品不同,我们提出了一个新颖的主题共关注网络(TCAN),从内容表示用于指导内容的意义上,该主题同时对内容关注和主题关注进行联合建模。主题关注和主题表示用于指导内容关注。我们在大型真实数据集上进行实验,并使用不同的TCAN设置进行测试。实验结果表明,我们的模型明显优于各种竞争基准方法。此外,与基于标准LSTM的方法相比,局部共同注意机制的结合使F1得分提高了13.6%以上。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|356-365|共10页
  • 作者单位

    Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin, Heilongjiang, Peoples R China;

    Harbin Inst Technol, Res Ctr Social Comp & Informat Retrieval, Harbin, Heilongjiang, Peoples R China;

    Harbin Inst Technol, Res Ctr Social Comp & Informat Retrieval, Harbin, Heilongjiang, Peoples R China;

    Singapore Management Univ, Sch Informat Syst, Singapore, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hashtag recommendation; Long short-term memory; Co-attention; Topic model;

    机译:标签建议;长期短期记忆;共同注意;主题模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号