首页> 外文期刊>Neurocomputing >Sample-based adaptive Kalman filtering for accurate camera pose tracking
【24h】

Sample-based adaptive Kalman filtering for accurate camera pose tracking

机译:基于样本的自适应卡尔曼滤波可实现精确的相机姿态跟踪

获取原文
获取原文并翻译 | 示例

摘要

Inferring the camera pose with high accuracy is deemed crucial in many applications such as robot manipulation and virtual reality. Traditionally, features extracted from camera images are processed by Kalman-based schemes due to their high efficacy and fast response. Yet, the performance of the filter deteriorates if the parameters of the filter are uncertain. Estimating the noise parameters through conventional adaptive schemes alleviates this problem, yet the estimation's accuracy still suffers from rough parameter estimations. To improve the accuracy of pose estimations further, this work proposes a novel adaptive scheme which employs a multi-model approach to approximate the system posteriori via sampling the noise and initial state covariance priories and progressively adjusting the filter parameters using the drawn samples. The experimental results confirm the enhanced performance of the proposed adaptive method compared to previously applied adaptive and non-adaptive pose estimation schemes, at the expense of additional complexity. (C) 2018 Elsevier B.V. All rights reserved.
机译:在机器人操纵和虚拟现实等许多应用中,高精度地推断出相机的姿势至关重要。传统上,由于其高效和快速响应,从相机图像中提取的特征会通过基于卡尔曼的方案进行处理。然而,如果滤波器的参数不确定,则滤波器的性能将恶化。通过常规自适应方案估计噪声参数可以缓解此问题,但是估计的准确性仍然受到粗略的参数估计的影响。为了进一步提高姿态估计的准确性,这项工作提出了一种新颖的自适应方案,该方案采用多模型方法通过对噪声和初始状态协方差优先级进行采样并使用绘制的采样逐步调整滤波器参数来近似系统后验。实验结果证实了与以前应用的自适应和非自适应姿势估计方案相比,所提出的自适应方法的性能得到了增强,但代价是额外的复杂性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号