首页> 外文期刊>Neurocomputing >Framelet regularization for uneven intensity correction of color images with illumination and reflectance estimation
【24h】

Framelet regularization for uneven intensity correction of color images with illumination and reflectance estimation

机译:利用照明和反射率估计对彩色图像进行不均匀强度校正的小框架正则化

获取原文
获取原文并翻译 | 示例

摘要

To solve the problem of simultaneously estimating the illumination and reflectance (IR) from a single image based on the Retinex theory, an effective way is utilizing a Maximum-a-Posterior (MAP) distribution as an approximation. However, the current MAP-based image enhancement methods fail to fully utilize the property of the reflectance, which leads to the loss of detailed structures of images. Through a large number of observations, it is found that the properties of reflectance can be effectively extracted by a powerful operator called framelet transform. Therefore, we propose a novel image enhancement scheme with framelet regularization on the reflectance, which is able to simultaneously estimate the IR while keeping image details. To be specific, a MAP distribution is adopted where a framelet regularization is proposed as a prior to exploiting the multi-scale edge information and sparsity of reflectance. Then the MAP problem is converted to a minimization of an energy function, which can be efficiently solved by an alternating direction method of multipliers with split Bregman iteration (ADMM-SBI). Furthermore, an adaptive Gamma correction operator is proposed to avoid over-enhancement of the illumination. Experiments show that the proposed approach outperforms the state-of-the-arts in terms of brightness improvement, contrast enhancement and details preservation. (C) 2018 Elsevier B.V. All rights reserved.
机译:为了解决基于Retinex理论从单个图像同时估计照明和反射率(IR)的问题,一种有效的方法是利用最大后验(MAP)分布作为近似值。但是,当前基于MAP的图像增强方法无法充分利用反射率的特性,从而导致图像的详细结构丢失。通过大量观察,发现可以通过称为框架转换的强大算子有效地提取反射率的属性。因此,我们提出了一种在反射率上具有小帧正则化的新颖图像增强方案,该方案能够在保持图像细节的同时估计IR。具体而言,采用MAP分布,其中在利用多尺度边缘信息和反射率稀疏性之前,提出了对小框架进行正则化的建议。然后,将MAP问题转换为能量函数的最小化,这可以通过具有分裂Bregman迭代的乘积的交替方向方法(ADMM-SBI)有效解决。此外,提出了自适应伽马校正算子,以避免照明的过度增强。实验表明,该方法在亮度改善,对比度增强和细节保留方面均优于最新技术。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号