首页> 外文期刊>Neurocomputing >Evidential KNN-based condition monitoring and early warning method with applications in power plant
【24h】

Evidential KNN-based condition monitoring and early warning method with applications in power plant

机译:基于证据的基于KNN的状态监测预警方法及其在电厂中的应用

获取原文
获取原文并翻译 | 示例

摘要

It is essential and challenging to monitor complex industrial processes and thus make an early warning for abnormal conditions, in particular when no fault samples can be observed under unknown uncertainties. To solve this problem, this paper proposes a so-called CMEW-EKNN method, i.e., condition monitoring and early warning method based on the evidential k-nearest neighbor (EKNN) rule in the framework of Evidence Theory. By employing the distance reject option in the EKNN rule, only normal operating data is needed to construct the early warning model. An adaptive discounting factor is adopted to make the early warning boundary adaptive to local distribution characteristics of the training samples, so as to improve both effectiveness and robustness of CMEW-EKNN. Comparisons on two practical applications in power plant demonstrate that the proposed CMEW-EKNN, which adopts the adaptive discounting factor, yields superior fault early warning performance than the PCA-based and FD-kNN fault detection approaches. (c) 2018 Published by Elsevier B.V.
机译:监视复杂的工业过程并因此对异常情况进行预警是至关重要且具有挑战性的,尤其是在未知不确定性下无法观察到故障样本的情况下。为了解决这个问题,本文提出了一种所谓的CMEW-EKNN方法,即在证据理论框架下基于证据k最近邻(EKNN)规则的状态监测和预警方法。通过在EKNN规则中采用距离拒绝选项,仅需要正常的运行数据即可构建预警模型。采用自适应折现因子使预警边界适应训练样本的局部分布特征,从而提高CMEW-EKNN的有效性和鲁棒性。对电厂中两个实际应用的比较表明,所提出的CMEW-EKNN采用了自适应折现因子,与基于PCA和FD-kNN的故障检测方法相比,具有更好的故障预警性能。 (c)2018年由Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号