首页> 外文期刊>Neurocomputing >A method based on refined composite multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault diagnosis
【24h】

A method based on refined composite multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault diagnosis

机译:基于改进复合多尺度符号动态熵和ISVM-BT的旋转机械故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Multiscale symbolic dynamic entropy (MSDE) has been recently proposed to characterize the dynamical behavior of time series, which has merits of high computational efficiency and robustness to noise comparing with multiscale sample entropy (MSE) and multiscale permutation entropy (MPE). However, the variance of the MSDE values increases as the length of a time series becomes shorter using multiscale analysis. To address this shortcoming, a new method, namely refined composite multi-scale symbolic dynamic entropy (RCMSDE), is proposed to extract the fault information of rotating machinery. Then, Laplacian score (LS) is utilized to reduce the dimension of eigenvectors. In the end, the selected features are taken as the input of the improved support vector machine based on binary tree (ISVM-BT) for fault type identification. The effectiveness of the proposed method is validated using both the simulation and two experimental tests. Results demonstrate that the proposed method generates highest classification accuracy in comparison with existing methods such as MSDE, refined composite multiscale sample entropy (RCMSE) and refined composite multiscale permutation entropy (RCMPE). (c) 2018 Elsevier B.V. All rights reserved.
机译:最近提出了多尺度符号动态熵(MSDE)来表征时间序列的动态行为,与多尺度样本熵(MSE)和多尺度置换熵(MPE)相比,它具有较高的计算效率和对噪声的鲁棒性。但是,使用多尺度分析,随着时间序列的长度变短,MSDE值的方差会增加。针对这一缺点,提出了一种提取复合机械多尺度符号动态熵(RCMSDE)的方法来提取旋转机械的故障信息。然后,利用拉普拉斯分数(LS)来减少特征向量的维数。最后,将所选特征作为改进的基于二叉树(ISVM-BT)的支持向量机的输入,用于故障类型识别。仿真和两个实验测试均验证了该方法的有效性。结果表明,与现有方法(例如MSDE,改进的复合多尺度样本熵(RCMSE)和改进的复合多尺度置换熵(RCMPE))相比,该方法具有最高的分类精度。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号