首页> 外文期刊>Neurocomputing >Applying convolution filter to matrix of word-clustering based document representation
【24h】

Applying convolution filter to matrix of word-clustering based document representation

机译:将卷积滤波器应用于基于词聚类的文档表示矩阵

获取原文
获取原文并翻译 | 示例

摘要

Word-clustering based document representation approaches have been suggested recently to overcome previous limitations such as high dimensionality or loss of innate interpretation; they show higher classification performance than other recent methods. Thus, we present a novel way to combine the advantages of various word-clustering based representation approaches. Instead of previous approaches, which represent documents in vector form, we represent documents in matrix form while concatenate various representation results. And we proposed another novel way to apply convolution filter to those representation while rearranging the elements by preserving the semantic distance. In order to verify the representation performance of our proposed methods, we utilized the kinds of dataset: customer-voice data from LG Electronics, public Reuter news dataset and 20 Newsgroup dataset. The results demonstrated that the proposed method outperforms all other methods and achieves a classification accuracy of 88.73%, 89.16%, and 88.06% for each dataset. (c) 2018 Elsevier B.V. All rights reserved.
机译:最近提出了基于词簇的文档表示方法,以克服先前的局限性,例如高维或固有解释的缺失。它们显示出比其他最近方法更高的分类性能。因此,我们提出了一种新颖的方式来结合各种基于单词聚类的表示方法的优点。代替先前的方法以矢量形式表示文档,我们以矩阵形式表示文档,同时连接各种表示结果。并且我们提出了另一种新颖的方法,即通过保留语义距离来对那些表示应用卷积滤波器,同时重新排列元素。为了验证所提出方法的表示性能,我们利用了各种数据集:LG电子的客户语音数据,路透社的公共新闻数据集和20个新闻组数据集。结果表明,所提出的方法优于所有其他方法,并且每个数据集的分类精度达到88.73%,89.16%和88.06%。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号