首页> 外文期刊>Neurocomputing >Multi-layer convolutional network-based visual tracking via important region selection
【24h】

Multi-layer convolutional network-based visual tracking via important region selection

机译:通过重要区域选择的基于多层卷积网络的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

The convolutional network-based tracking (CNT) algorithm provides a training network with warped target regions in the first frame instead of large auxiliary datasets, which solves the problem of convolutional neural network (CNN)-based tracking requiring very long training time and a large number of auxiliary training samples. However, the two-layer CNT uses only gray feature that causes sensitivity to appearance variations. Besides, some samples with useless information should be removed to avoid drifting problems. For these reasons, a multi-layer convolutional network-based visual tracking algorithm via important region selection (IRST) is proposed in this paper. The proposed important region selection model is built via high entropy selection and background discrimination, which enables the training samples to be informative in order to provide enough stable information and also be discriminative so as to resist distractors. The feature maps are also obtained by weighting the template filters with cluster weights. Instead of simple gray features, IRST adds the Gabor layer to explore the texture feature of the target that is effective on coping with illumination and rotation variations. Extensive experiments show that the proposed algorithm achieves superior performances in many challenging visual tracking tasks. (c) 2018 Elsevier B.V. All rights reserved.
机译:基于卷积神经网络的跟踪(CNT)算法为训练网络提供了第一帧中具有扭曲目标区域的训练网络,而不是大型辅助数据集,从而解决了基于卷积神经网络(CNN)的跟踪需要非常长的训练时间和较大的训练量的问题辅助训练样本数。然而,两层CNT仅使用灰色特征,这导致对外观变化的敏感性。此外,应删除一些无用信息的样本,以避免漂移问题。由于这些原因,本文提出了一种基于重要区域选择(IRST)的基于多层卷积网络的视觉跟踪算法。提出的重要区域选择模型是通过高熵选择和背景鉴别建立的,这使得训练样本可以提供足够的稳定信息,也可以提供区分性,以抵抗干扰因素。通过使用聚类权重对模板过滤器加权也可以获得特征图。 IRST代替了简单的灰色特征,而是添加了Gabor层来探索目标的纹理特征,该特征可有效应对照明和旋转变化。大量实验表明,该算法在许多具有挑战性的视觉跟踪任务中均具有出色的性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号