首页> 外文期刊>Neurocomputing >Towards a sparse low-rank regression model for memorability prediction of images
【24h】

Towards a sparse low-rank regression model for memorability prediction of images

机译:走向稀疏的低秩回归模型以预测图像的记忆力

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, it is inevitable to experience plenty of images in everyday life. Some of them are remembered for a long time while others are forgotten after only a glance. It has been proved that memorability is an intrinsically stable property of images which measures the degree to which images are remembered. Although some work have been conducted to investigate the factors that make an image memorable, yet studies on designing robust models to predict image memorability have rarely been reported. Inspired by the good property of Low-Rank Representation (LRR) in dealing with noisy data, in this paper we propose a sparse low-rank regression framework for image memorability prediction, in which a projection matrix, applied to capture the global low-rank structure embedded in original feature space, and a sparse coefficient vector, applied to build connections between images and their memorability scores, are jointly learnt to guarantee the superior performance. In particular, to enable our proposed approach to discover discriminant attribute features automatically, we impose a structured sparsity constraint on the reconstruction error matrix against the existence of noisy attributes. We develop an alternating direction algorithm by applying augmented Lagrangian multipliers method to solve the objective function of our model. Experiments conducted on two publicly available memorability datasets demonstrates the effectiveness of the proposed method. Source code is freely available: https://www.github.com/HodorHoldthedoor/image-memorability. (C) 2018 Elsevier B.V. All rights reserved.
机译:如今,在日常生活中不可避免地要经历大量的图像。他们中的一些人被记住很长一段时间,而其他人一眼就被忘记了。业已证明,记忆力是图像的固有稳定特性,它可以测量图像被记住的程度。尽管已经进行了一些工作来调查使图像令人印象深刻的因素,但是很少有关于设计鲁棒模型来预测图像记忆性的研究的报道。受到低秩表示(LRR)处理噪声数据的良好特性的启发,本文提出了一种稀疏的低秩回归框架用于图像记忆性预测,其中投影矩阵用于捕获全局低秩共同学习了嵌入原始特征空间中的结构和稀疏系数矢量,以建立图像之间的联系及其记忆性得分,以保证卓越的性能。尤其是,为了使我们提出的方法能够自动发现可区分属性的特征,我们针对噪声属性的存在对重构误差矩阵施加了结构化的稀疏性约束。我们通过应用增强的拉格朗日乘子法来开发交替方向算法,以解决模型的目标函数。在两个公开的记忆性数据集上进行的实验证明了该方法的有效性。源代码可免费获得:https://www.github.com/HodorHoldthedoor/image-memorability。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号