首页> 外文期刊>Neurocomputing >Successive approximation training algorithm for Feedforward neural networks
【24h】

Successive approximation training algorithm for Feedforward neural networks

机译:前馈神经网络的逐次逼近训练算法

获取原文
获取原文并翻译 | 示例

摘要

A novel algorithm based on successive approximation training for feedforward neural networks is presented in this paper. The convergence of the algorithm is analysed theoreti- cally and the training error is estimated. Theoretical analysis shows that the novel training algorithm is able to overcome the stalemate problem in the later training stage of the tra- ditional algorithms. Numerical experiments show that the proposed algorithm increases the rate of convergence and improves the generalization performance by avoiding local minima.
机译:提出了一种基于逐次逼近训练的前馈神经网络算法。从理论上分析了算法的收敛性,并估计了训练误差。理论分析表明,新的训练算法能够克服传统算法训练后期的僵局问题。数值实验表明,该算法避免了局部极小值,提高了收敛速度,提高了泛化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号