首页> 外文期刊>Neurocomputing >Training neural networks with a multi-objective sliding mode control algorithm
【24h】

Training neural networks with a multi-objective sliding mode control algorithm

机译:用多目标滑模控制算法训练神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new sliding mode control algorithm that is able to guide the trajectory of a multi-layer perceptron within the plane formed by the two objective functions: training set error and norm of the weight vectors. The results show that the neural networks obtained are able to generate an approximation to the Pareto set, from which an improved generalization performance model is selected.
机译:本文提出了一种新的滑模控制算法,该算法能够在由两个目标函数(训练集误差和权向量的范数)形成的平面内引导多层感知器的轨迹。结果表明,所获得的神经网络能够生成帕累托集的近似值,从而从中选择一种改进的泛化性能模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号