首页> 外文期刊>Neurocomputing >Inversion-based nonlinear adaptation of noisy acoustic parameters for a neural/HMM speech recognizer
【24h】

Inversion-based nonlinear adaptation of noisy acoustic parameters for a neural/HMM speech recognizer

机译:基于反演的神经/ HMM语音识别器噪声参数的非线性自适应

获取原文
获取原文并翻译 | 示例

摘要

Spoken human -machine interaction in real-world environments requires acoustic models that are robust to changes in acoustic conditions, e.g. presence of noise. Unfortunately, the popular hidden Markov models (HMM) are not noise tolerant. One way to increase recognition performance is to acquire a small adaptation set of noisy utterances, which is used to estimate a normalization mapping between noisy and clean features to be fed into the acoustic model. This paper proposes an unsupervised maximum-likelihood gradient-ascent training algorithm (instead of the usual least squares regression) for a neural feature adaptation module, properly combined with a hybrid connectionist/HMM speech recognizer. The algorithm is inspired by the so-called "inversion principle", that prescribes the optimization of the input features instead of the model parameters. Simulation results on a real-world speaker-independent continuous speech corpus of connected Italian digits, corrupted by noise, validate the approach. A small neural net (13 hidden neurons) trained over a single adaptation utterance for one iteration yields a 18.79% relative word error rate (WER) reduction over the bare hybrid, and a 65.10% relative WER reduction over the Gaussian-based HMM.
机译:现实环境中的口语人机交互需要声学模型,该模型对声学条件的变化具有鲁棒性,例如存在噪音。不幸的是,流行的隐马尔可夫模型(HMM)不能忍受噪声。一种提高识别性能的方法是获取一小套噪声话语,用于估计噪声特征和干净特征之间的归一化映射,以将其输入声学模型。本文为神经特征自适应模块提出了一种无监督的最大似然梯度上升训练算法(而不是通常的最小二乘回归),并与混合连接器/ HMM语音识别器正确结合。该算法的灵感来自所谓的“反演原理”,它规定了输入特征而不是模型参数的优化。在现实世界中,由连接的意大利语数字组成的独立于说话者的连续语音语料库的仿真结果被噪声破坏,验证了该方法。在单个适应性话语下进行一次迭代训练的小型神经网络(13个隐藏的神经元)在裸混合系统上的相对单词错误率(WER)降低了18.79%,在基于高斯的HMM上的WER降低了65.10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号