首页> 外文期刊>Neurocomputing >A meta-learning approach to automatic kernel selection for support vector machines
【24h】

A meta-learning approach to automatic kernel selection for support vector machines

机译:支持向量机自动内核选择的元学习方法

获取原文
获取原文并翻译 | 示例

摘要

Appropriate choice of a kernel is the most important ingredient of the kernel-based learning methods such as support vector machine (SVM). Automatic kernel selection is a key issue given the number of kernels available, and the current trial-and-error nature of selecting the best kernel for a given problem. This paper introduces a new method for automatic kernel selection, with empirical results based on classification. The empirical study has been conducted among five kernels with 112 different classification problems, using the popular kernel based statistical learning algorithm SVM. We evaluate the kernels' performance in terms of accuracy measures. We then focus on answering the question: which kernel is best suited to which type of classification problem? Our meta-learning methodology involves measuring the problem characteristics using classical, distance and distribution-based statistical information. We then combine these measures with the empirical results to present a rule-based method to select the most appropriate kernel for a classification problem. The rules are generated by the decision tree algorithm C5.0 and are evaluated with 10 fold cross validation. All generated rules offer high accuracy ratings.
机译:适当选择内核是基于内核的学习方法(如支持向量机(SVM))的最重要组成部分。鉴于可用内核的数量以及为给定问题选择最佳内核的当前反复试验性质,自动内核选择是一个关键问题。本文介绍了一种新的自动核选择方法,基于分类的经验结果。使用流行的基于内核的统计学习算法SVM,在具有112个不同分类问题的五个内核之间进行了实证研究。我们根据准确性度量来评估内核的性能。然后,我们着重回答以下问题:哪种内核最适合哪种类型的分类问题?我们的元学习方法涉及使用经典的,基于距离和分布的统计信息来测量问题特征。然后,我们将这些度量与经验结果相结合,以提出一种基于规则的方法来为分类问题选择最合适的内核。规则由决策树算法C5.0生成,并通过10倍交叉验证进行评估。所有生成的规则均提供高精度等级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号