首页> 外文期刊>Neurocomputing >Associative memory of connectivity patterns
【24h】

Associative memory of connectivity patterns

机译:连接模式的关联记忆

获取原文
获取原文并翻译 | 示例

摘要

The goal of the visual correspondence problem is to establish a connectivity pattern (a mapping) between two images such that features projected from the same scene point are connected. Dynamic link matching (DLM) is a self-organizing dynamical system to establish such connectivity patterns for object recognition, but with rather naturally given simple interactions between pattern elements, its organizing process is slow. Here we propose to stabilize (store) established mappings so that they can be recovered efficiently and reliably in the future. This is implemented by modifying the underlying system of interactions using the established mappings as learning examples, where the Hebbian rule makes the adapted interactions proportional to the weights of an associative memory of these mappings. It is shown in simulation that the adapted interactions lead to faster and more robust DLM.
机译:视觉对应问题的目标是在两个图像之间建立连接模式(映射),以使从同一场景点投影的要素相互连接。动态链接匹配(DLM)是一种自组织的动态系统,用于建立用于对象识别的连接模式,但是自然而然地,如果在模式元素之间进行简单的交互,其组织过程就很慢。在这里,我们建议稳定(存储)已建立的映射,以便将来可以高效,可靠地对其进行恢复。这是通过使用已建立的映射作为学习示例来修改交互的基础系统来实现的,其中Hebbian规则使适应的交互与这些映射的关联内存的权重成比例。在仿真中显示,经过适应的交互作用会导致更快,更健壮的DLM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号