首页> 外文期刊>Neurocomputing >Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system
【24h】

Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system

机译:直升机声音识别系统中RBF神经网络学习算法的改进

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a set of optimizations in learning algorithms commonly used for training radial basis function (RBF) neural networks. These optimizations are applied to a RBF neural network used in identifying helicopter types, processing their rotor sounds. The first method uses an optimum learning rate in each iteration of training process. This method increases the speed of learning process and also achieves an absolute stability in network response. Another modification is applied to quick propagation (QP) method as a generalization that attains more learning speed. Finally, we introduced the general optimum steepest descent (GOSD) method, which contains both improvements in learning RBF networks. All modified methods are employed in training a system that recognizes helicopters' rotor sounds exploiting a RBF neural network. Comparing results of these learning methods with the previous ones yields interesting outcomes.
机译:本文提出了一组用于训练径向基函数(RBF)神经网络的学习算法优化。这些优化应用于应用于识别直升机类型,处理其旋翼声音的RBF神经网络。第一种方法在训练过程的每次迭代中使用最佳学习率。这种方法提高了学习过程的速度,并且还实现了网络响应的绝对稳定性。另一种修改是应用于快速传播(QP)方法,作为一种通用的方法,可以提高学习速度。最后,我们介绍了通用的最佳最速下降(GOSD)方法,该方法包含了对学习RBF网络的两种改进。所有经过改进的方法都用于训练利用RBF神经网络识别直升机旋翼声音的系统。将这些学习方法的结果与以前的方法进行比较会产生有趣的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号