首页> 外文期刊>Neurocomputing >A neural network approach to audio-assisted movie dialogue detection
【24h】

A neural network approach to audio-assisted movie dialogue detection

机译:音频辅助电影对话检测的神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

A novel framework for audio-assisted dialogue detection based on indicator functions and neural networks is investigated. An indicator function defines that an actor is present at a particular time instant. The cross-correlation function of a pair of indicator functions and the magnitude of the corresponding cross-power spectral density are fed as input to neural networks for dialogue detection. Several types of artificial neural networks, including multilayer perceptrons (MLPs), voted perceptrons, radial basis function networks, support vector machines, and particle swarm optimization-based MLPs are tested. Experiments are carried out to validate the feasibility of the aforementioned approach by using ground-truth indicator functions determined by human observers on six different movies. A total of 41 dialogue instances and another 20 non-dialogue instances are employed. The average detection accuracy achieved is high, ranging between 84.78% ± 5.499% and 91.43%±4.239%.
机译:研究了一种基于指示器功能和神经网络的新型音频辅助对话检测框架。指示符功能定义在特定时刻存在演员。一对指标函数的互相关函数和相应的互功率谱密度的大小作为输入提供给神经网络以进行对话检测。测试了几种类型的人工神经网络,包括多层感知器(MLP),投票感知器,径向基函数网络,支持向量机和基于粒子群优化的MLP。通过使用由人类观察者在六种不同电影上确定的地面真相指示功能,进行了实验以验证上述方法的可行性。总共使用了41个对话实例和另外20个非对话实例。达到的平均检测精度很高,介于84.78%±5.499%和91.43%±4.239%之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号