首页> 外文期刊>Neurocomputing >Improved Delay-dependent Exponential Stability Criteria For Discrete-time Recurrent Neural Networks With Time-varying Delays
【24h】

Improved Delay-dependent Exponential Stability Criteria For Discrete-time Recurrent Neural Networks With Time-varying Delays

机译:具有时变时滞的离散时间递归神经网络的改进的时滞相关指数稳定性准则

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the problem of stability analysis for a class of discrete-time recurrent neural networks with time-varying delays. Under a weak assumption on the activation functions and using a new Lyapunov functional, a delay-dependent condition guaranteeing the global exponential stability of the concerned neural network is obtained in terms of a linear matrix inequality. It is shown that this stability condition is less conservative than some previous ones in the literature. When norm-bounded parameter uncertainties appear in a delayed discrete-time recurrent neural network, a delay-dependent robust exponential stability criterion is also presented. Numerical examples are provided to demonstrate the effectiveness of the proposed method.
机译:本文涉及一类具有时变时滞的离散时间递归神经网络的稳定性分析问题。在对激活函数的一个较弱假设下,并使用新的Lyapunov函数,根据线性矩阵不等式获得了保证相关神经网络的全局指数稳定性的依赖于延迟的条件。结果表明,该稳定性条件不如文献中先前的条件保守。当在延迟离散时间递归神经网络中出现有范数约束的参数不确定性时,还提出了依赖于延迟的鲁棒指数稳定性准则。数值算例表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号