首页> 外文期刊>Neurocomputing >Error-driven active learning in growing radial basis function networks for early robot learning
【24h】

Error-driven active learning in growing radial basis function networks for early robot learning

机译:径向基函数网络中误差驱动的主动学习,用于早期机器人学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe a new error-driven active learning approach to self-growing radial basis function networks for early robot learning. There are several mappings that need to be set up for an autonomous robot system for sensorirrtotor coordination and transformation of sensory information from one modality to another, and these mappings are usually highly nonlinear. Traditional passive learning approaches usually cause both large mapping errors and nonuniform mapping error distribution compared to active learning. A hierarchical clustering technique is introduced to group large mapping errors and these error clusters drive the system to actively explore details of these clusters. Higher level local growing radial basis function subnetworks are used to approximate the residual errors from previous mapping levels. Plastic radial basis function networks construct the substrate of the learning system and a simplified node-decoupled extended Kalman filter algorithm is presented to train these radial basis function networks. Experimental results are given to compare the performance among active learning with hierarchical adaptive RBF networks, passive learning with adaptive RBF networks and hierarchical mixtures of experts, as well as their robustness under noise conditions.
机译:在本文中,我们描述了一种新的由错误驱动的主动学习方法,用于自增长径向基函数网络的早期机器人学习。自治机器人系统需要建立几种映射,以实现传感器与传感器之间的协调,以及将传感信息从一种方式转换为另一种方式,这些映射通常是高度非线性的。与主动学习相比,传统的被动学习方法通​​常会导致较大的映射错误和不均匀的映射错误分布。引入了层次聚类技术来对大的映射错误进行分组,并且这些错误聚类驱动系统主动探索这些聚类的详细信息。使用更高级别的局部增长径向基函数子网来近似来自先前映射级别的残留误差。塑料径向基函数网络构成了学习系统的基础,并提出了一种简化的节点解耦扩展卡尔曼滤波算法来训练这些径向基函数网络。实验结果比较了主动学习与分层自适应RBF网络的学习,被动学习与自适应RBF网络和专家的分层混合的性能,以及它们在噪声条件下的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号