首页> 外文期刊>Neurocomputing >On the implicit acquisition of a context-free grammar by a simple recurrent neural network
【24h】

On the implicit acquisition of a context-free grammar by a simple recurrent neural network

机译:通过简单的递归神经网络隐式获取上下文无关的语法

获取原文
获取原文并翻译 | 示例

摘要

The performance of a simple recurrent neural network on the implicit acquisition of a context-free grammar is re-examined and found to be significantly higher than previously reported by Elman. This result is obtained although the previous work employed a multilayer extension of the basic form of simple recurrent network and restricted the complexity of training and test corpora. The high performance is traced to a well-organized internal representation of the grammatical elements, as probed by a principal-component analysis of the hidden-layer activities. From the next-symbol-prediction performance on sentences not present in the training corpus, a capacity of generalization is demonstrated.
机译:重新检查了简单的递归神经网络在无上下文语法的隐式获取上的性能,发现其性能明显高于Elman先前的报告。尽管先前的工作采用了简单递归网络的基本形式的多层扩展并且限制了训练和测试语料的复杂性,但仍获得了该结果。高性能可追溯到语法元素的组织良好的内部表示形式,如对隐藏层活动的主成分分析所探明的。根据训练语料库中不存在的句子的下一个符号预测性能,可以证明其泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号