首页> 外文期刊>Neurocomputing >Palmprint recognition using Gabor feature-based (2D) PCA
【24h】

Palmprint recognition using Gabor feature-based (2D) PCA

机译:使用基于Gabor特征的(2D)PCA进行掌纹识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel approach of Gabor feature-based (2D)~2PCA (GB(2D)~2PCA) for palmprint recognition. Three main steps are involved in the proposed GB(2D)~2PCA: (ⅰ) Gabor features of different scales and orientations are extracted by the convolution of Gabor filter bank and the original gray images; (ⅱ) (2D)~2PCA is then applied for dimensionality reduction of the feature space in both row and column directions; and (ⅲ) Euclidean distance and the nearest neighbor classifier are finally used for classification. The method is not only robust to illumination and rotation, but also efficient in feature matching. Experimental results demonstrate the effectiveness of our proposed GB(2D)~2PCA in both accuracy and speed.
机译:在本文中,我们提出了一种基于Gabor特征的(2D)〜2PCA(GB(2D)〜2PCA)进行掌纹识别的新方法。提出的GB(2D)〜2PCA涉及三个主要步骤:(ⅰ)通过对Gabor滤波器组和原始灰度图像进行卷积提取不同比例和方向的Gabor特征。然后将())(2D)〜2PCA应用于行和列方向上特征空间的降维; (ⅲ)欧几里得距离和最近邻分类器最终用于分类。该方法不仅对照明和旋转鲁棒,而且在特征匹配方面也是有效的。实验结果证明了我们提出的GB(2D)〜2PCA在准确性和速度上都是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号