首页> 外文期刊>Neurocomputing >A new sub-pixel mapping algorithm based on a BP neural network with an observation model
【24h】

A new sub-pixel mapping algorithm based on a BP neural network with an observation model

机译:一种新的基于BP神经网络的观测模型亚像素映射算法

获取原文
获取原文并翻译 | 示例

摘要

The mixed pixel is a common problem in remote sensing classification. Even though the composition of these pixels for different classes can be estimated with a pixel un-mixing model, the output provides no indication of how such classes are distributed spatially within these pixels. Sub-pixel mapping is a technique designed to use the output information with the assumption of spatial dependence to obtain a sharpened image. Pixels are divided into sub-pixels, representing the land cover class fractions. This paper proposes a new algorithm based on a back-propagation (BP) network combined with an observation model. This method provides an effective method of obtaining the sub-pixel mapping result and can provide an approximation of the reference classification image. With the upscale factor, the model was tested on both a simple artificial image and a remote sensing image, and the results confirm that the proposed mapping algorithm has better performance than the original BPNN model.
机译:混合像素是遥感分类中的常见问题。即使可以使用像素解混模型估计这些不同类别的像素的组成,但输出仍未提供此类类别如何在这些像素内空间分布的指示。子像素映射是一种设计用于在假设空间依赖性的情况下使用输出信息来获得清晰图像的技术。像素分为子像素,代表土地覆被类别分数。提出了一种基于BP网络结合观测模型的新算法。该方法提供了一种获得子像素映射结果的有效方法,并且可以提供参考分类图像的近似值。考虑到放大系数,在简单的人工图像和遥感图像上对该模型进行了测试,结果证实了该映射算法具有比原始BPNN模型更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号