首页> 外文会议>International Conference on Instrumentation Measurement, Computer, Communication and Control >Genetic Algorithm Based Optimization after Sub-pixel/Pixel Spatial Attraction Model for Sub-pixel Mapping
【24h】

Genetic Algorithm Based Optimization after Sub-pixel/Pixel Spatial Attraction Model for Sub-pixel Mapping

机译:基于遗传算法的亚像素/像素空间吸引模型的亚像素映射优化

获取原文

摘要

The spatial resolution of hyper-spectral remote sensing image is not enough to describe the distribution of land cover classes in the mixed pixel, sub-pixel mapping (SPM) is a promising way to predict the location of end-member at the sub-pixel level, based on the fraction images which were generated by spectral un-mixing. In this paper, a novel method was proposed to realize SPM. The proposed method was contained two main steps: sub-pixel/pixel spatial attraction model (SPSAM) is used to generate the initial results, and genetic algorithm (GA) as the post-process method to optimize SPM. The experiment was tested on two sets of data: simple artificial images, synthetic image. The results show the proposed algorithm has the better accuracy than the original SPSAM method.
机译:高光谱遥感图像的空间分辨率不足以描述混合像素中土地覆盖类别的分布,子像素映射(SPM)是一种预测端部成员在子像素位置的有前途的方法级别,基于通过光谱解混生成的分数图像。本文提出了一种实现SPM的新方法。所提出的方法包括两个主要步骤:使用亚像素/像素空间吸引模型(SPSAM)生成初始结果,以及使用遗传算法(GA)作为后处理方法来优化SPM。实验在两组数据上进行了测试:简单的人造图像,合成图像。结果表明,该算法比原始的SPSAM方法具有更好的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号