首页> 外文期刊>Neurocomputing >Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion
【24h】

Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion

机译:通过纳入全局类间可分离性准则提高基于局部裕度的学习方法的判别能力

获取原文
获取原文并翻译 | 示例

摘要

Many applications in machine learning and computer vision come down to feature representation and reduction. Manifold learning seeks the intrinsic low-dimensional manifold structure hidden in the high-dimensional data. In the past few years, many local discriminant analysis methods have been proposed to exploit the discriminative submanifold structure by extending the manifold learning idea to supervised ones. Particularly, marginal Fisher analysis (MFA) finds the local interclass margin for feature extraction and classification. However, since the limited data pairs are employed to determine the discriminative margin, such method usually suffers from the maladjusted learning as we introduced in this paper. To improve the discriminant ability of MFA, we incorporate the marginal Fisher idea with the global between-class separability criterion (BCSC), and propose a novel supervised learning method, called local and global margin projections (LGMP), where the maladjusted learning problem can be alleviated. Experimental evaluation shows that the proposed LGMP outperforms the original MFA.
机译:机器学习和计算机视觉中的许多应用都归结为特征表示和归约。流形学习寻求隐藏在高维数据中的固有低维流形结构。在过去的几年中,已经提出了许多局部判别分析方法,通过将流形学习思想扩展到有监督的方法来利用判别子流形结构。特别是,边际Fisher分析(MFA)找到了局部类间边距以进行特征提取和分类。但是,由于使用了有限的数据对来确定判别余量,因此,如我们在本文中介绍的那样,这种方法通常会出现学习失调的情况。为了提高MFA的判别能力,我们将边际Fisher概念与全局类间可分离性标准(BCSC)结合起来,并提出了一种新颖的监督学习方法,称为局部和全局边际预测(LGMP),在这种方法下,学习失调的学习问题可能会导致被减轻。实验评估表明,所提出的LGMP优于原始MFA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号