首页> 外文期刊>Neurocomputing >A project neural network for solving degenerate quadratic minimax problem with linear constraints
【24h】

A project neural network for solving degenerate quadratic minimax problem with linear constraints

机译:用于求解具有线性约束的退化二次极大极小问题的项目神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a quadratic minimax problem with linear constraints is studied. The mixed linear constraints and the degeneracy are the two significant characters of the problem considered in this paper. On the basis of the project properties and Lyapunov method, we get the complete convergence and the finite-time convergence of the proposed neural network in this paper. Moreover, we get that the nonsingular parts of the output trajectories respect to Q_(11) and Q_(22) are exponentially convergent. Particularly, we also give some analysis to the degenerate quadratic minimax problem without constraints. Furthermore, four illustrative examples are given to show the necessity of the matrix H in the network to solve this problem and the superiority of the network in this paper.
机译:本文研究了具有线性约束的二次极大极小问题。混合线性约束和简并性是本文考虑的问题的两个重要特征。基于项目的性质和Lyapunov方法,本文获得了所提出的神经网络的完全收敛性和有限时间收敛性。此外,我们得到关于Q_(11)和Q_(22)的输出轨迹的非奇异部分是指数收敛的。特别是,我们还对无约束的退化二次极大极小问题进行了一些分析。此外,给出了四个说明性的例子来说明网络中矩阵H解决这一问题的必要性以及网络的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号