首页> 外文期刊>Neurocomputing >Adaptive particle swarm optimization for CNN associative memories design
【24h】

Adaptive particle swarm optimization for CNN associative memories design

机译:CNN联想记忆设计的自适应粒子群优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper particle swarm optimization is used to implement a synthesis procedure for cellular neural networks autoassociative memories. The use of this optimization technique allows a global search for computing the model parameters that identify designed memories, providing a synthesis procedure that takes into account the robustness of the solution. In particular, the design parameters can be modified during the convergence in order to guarantee minimum recall performances of the network in terms of robustness to noise overlapped to input patterns. Numerical results confirm the good performances of the designed networks when patterns are affected by different kinds of noise.
机译:在本文中,粒子群优化用于实现细胞神经网络自缔合记忆的合成过程。使用此优化技术可以进行全局搜索,以计算可识别设计内存的模型参数,从而提供一种综合解决方案,将解决方案的健壮性考虑在内。特别地,可以在收敛期间修改设计参数,以便在对与输入模式重叠的噪声的鲁棒性方面保证网络的最小召回性能。数值结果证实了当图案受到不同类型的噪声影响时,所设计网络的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号