首页> 外文期刊>Neurocomputing >Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion
【24h】

Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion

机译:通过带有方向滤波和色散的多尺度神经体系结构识别彩色和纹理图像

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to outline a multiple scale neural model to recognise colour images of textured scenes. This model combines colour and textural information in order to recognise colour texture images through the operation of two main components: a segmentation component composed of the colour opponent system (COS) and the chromatic segmentation system (CSS); and a recognition component formed by an ARTMAP-based neural network with scale and orientation-invariance properties. Segmentation is achieved by perceptual contour extraction and diffusion processes on the colour opponent channels based on the human psychophysical theory of colour perception. This colour regions enhancement along with their local textural features constitutes the recognition pattern to be sent to the supervised neural classifier. The CSS accomplishes the colour region enhancement through a multiple scale loop of oriented filters and competition-cooperation mechanisms. Afterwards, the neural architecture performs an attentive recognition of the scene using those oriented filters responses and the chromatic diffusions. Some comparative tests with other models are included in order to prove the recognition capabilities of this neural architecture and how the use of colour information encourages the texture classification and the accuracy of the boundary detection.
机译:本文的目的是概述一种多尺度神经模型,以识别纹理场景的彩色图像。该模型将颜色和纹理信息结合在一起,以便通过两个主要组件的操作来识别颜色纹理图像:由颜色对立系统(COS)和色度分割系统(CSS)组成的分割组件;以及由具有比例和方向不变性的基于ARTMAP的神经网络形成的识别组件。分割是通过基于颜色感知的人类心理物理理论在颜色对手通道上进行感知轮廓提取和扩散过程来实现的。颜色区域的增强及其局部纹理特征构成了要发送给监督神经分类器的识别模式。 CSS通过定向过滤器和竞争合作机制的多尺度循环来实现色彩区域的增强。之后,神经体系结构使用那些定向的滤镜响应和色散来对场景进行仔细的识别。包括与其他模型的一些比较测试,以证明这种神经体系结构的识别能力以及颜色信息的使用如何促进纹理分类和边界检测的准确性。

著录项

  • 来源
    《Neurocomputing》 |2009年第18期|3713-3725|共13页
  • 作者单位

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

    Department of Signal Theory, Communications and Telematics Engineering, Telecommunications Engineering School, University of Valladolid, Valladolid, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    colour image segmentation; colour-opponent processes; texture recognition; neural classifier; adaptive resonance theory; orientation-invariance;

    机译:彩色图像分割反对颜色的过程;纹理识别;神经分类器自适应共振理论方向不变性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号