首页> 外文期刊>Neurocomputing >A combination of hidden Markov model and fuzzy model for stock market forecasting
【24h】

A combination of hidden Markov model and fuzzy model for stock market forecasting

机译:隐马尔可夫模型与模糊模型相结合的股市预测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel combination of the hidden Markov model (HMM) and the fuzzy models for forecasting stock market data. In a previous study we used an HMM to identify similar data patterns from the historical data and then used a weighted average to generate a 'one-day-ahead' forecast. This paper uses a similar approach to identify data patterns by using the HMM and then uses fuzzy logic to obtain a forecast value. The HMM's log-likelihood for each of the input data vectors is used to partition the dataspace. Each of the divided dataspaces is then used to generate a fuzzy rule. The fuzzy model developed from this approach is tested on stock market data drawn from different sectors. Experimental results clearly show an improved forecasting accuracy compared to other forecasting models such as, ARIMA, artificial neural network (ANN) and another HMM-based forecasting model.
机译:本文提出了一种隐马尔可夫模型(HMM)和模糊模型的新型组合,用于预测股市数据。在先前的研究中,我们使用HMM从历史数据中识别出相似的数据模式,然后使用加权平均值生成“提前一天”的预测。本文使用类似的方法通过HMM识别数据模式,然后使用模糊逻辑获得预测值。每个输入数据向量的HMM对数似然性用于划分数据空间。然后,将每个划分的数据空间用于生成模糊规则。通过这种方法开发的模糊模型在不同部门的股票市场数据上进行了测试。实验结果清楚地表明,与其他预测模型(如ARIMA,人工神经网络(ANN)和其他基于HMM的预测模型)相比,预测准确性有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号