首页> 外文期刊>Neurocomputing >A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
【24h】

A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks

机译:用于优化人工神经网络参数和性能的多目标模因和混合方法

获取原文
获取原文并翻译 | 示例

摘要

The use of artificial neural networks implies considerable time spent choosing a set of parameters that contribute toward improving the final performance. Initial weights, the amount of hidden nodes and layers, training algorithm rates and transfer functions are normally selected through a manual process of trial-and-error that often fails to find the best possible set of neural network parameters for a specific problem. This paper proposes an automatic search methodology for the optimization of the parameters and performance of neural networks relying on use of Evolution Strategies, Particle Swarm Optimization and concepts from Genetic Algorithms corresponding to the hybrid and global search module. There is also a module that refers to local searches, including the well-known Multilayer Perceptrons, Back-propagation and the Levenberg-Marquardt training algorithms. The methodology proposed here performs the search using the aforementioned parameters in an attempt to optimize the networks and performance. Experiments were performed and the results proved the proposed method to be better than trial-and-error and other methods found in the literature.
机译:人工神经网络的使用意味着花费大量时间来选择一组有助于改善最终性能的参数。通常通过手动试错法来选择初始权重,隐藏节点和层的数量,训练算法速率和传递函数,而这通常无法为特定问题找到最佳的神经网络参数集。本文提出了一种自动搜索方法,用于优化神经网络的参数和性能,这要依靠进化策略,粒子群优化以及与混合和全局搜索模块相对应的遗传算法的概念。还有一个模块涉及本地搜索,包括著名的多层感知器,反向传播和Levenberg-Marquardt训练算法。此处提出的方法使用上述参数执行搜索,以尝试优化网络和性能。进行了实验,结果证明了该方法优于反复试验法和文献中发现的其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号