首页> 外文期刊>Neurocomputing >A unified semi-supervised dimensionality reduction framework for manifold learning
【24h】

A unified semi-supervised dimensionality reduction framework for manifold learning

机译:用于流形学习的统一的半监督降维框架

获取原文
获取原文并翻译 | 示例

摘要

We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called "KPCA trick" is proposed to handle non-linear problems.
机译:我们提出了用于流形学习的半监督降维的通用框架,它自然地概括了应用频谱分解的现有监督和非监督学习框架。在我们的框架下派生的算法既可以使用带标签的示例也可以使用未带标签的示例,并且能够处理数据形成单独的流形簇的复杂问题。我们的框架提供了简单的视图,解释了现有框架之间的关系,并提供了可以改进现有算法的进一步扩展。此外,提出了一种新的半监督内核化框架,称为“ KPCA技巧”,用于处理非线性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号