首页> 外文期刊>Neurocomputing >Self adaptive growing neural network classifier for faults detection and diagnosis
【24h】

Self adaptive growing neural network classifier for faults detection and diagnosis

机译:用于故障检测和诊断的自适应成长神经网络分类器

获取原文
获取原文并翻译 | 示例

摘要

Fault detection and diagnosis have gained widespread industrial interest in machine monitoring due to their potential advantage that results from reducing maintenance costs, improving productivity and increasing machine availability. This article develops an adaptive intelligent technique based on artificial neural networks combined with advanced signal processing methods for systematic detection and diagnosis of faults in industrial systems based on a classification method. It uses discrete wavelet transform and training techniques based on locating and adjusting the Gaussian neurons in activation zones of training data. The learning (1) provides minimization in the number of neurons depending on cost error function and other stopping criterions; (2) offers rapid training and testing processes; (3) provides accuracy in classification as confirmed by the results on real signals. The method is applied to classify mechanical faults of rotary elements and to detect and isolate disturbances for a chemical process. Obtained results are analyzed, explained and compared with various methods that have been widely investigated for fault diagnosis.
机译:故障检测和诊断由于其潜在的优势而降低了维护成本,提高了生产率并提高了机器的可用性,因此在机器监控方面引起了广泛的工业兴趣。本文开发了一种基于人工神经网络的自适应智能技术,结合先进的信号处理方法,可基于分类方法对工业系统中的故障进行系统检测和诊断。它使用离散小波变换和训练技术,该技术基于在训练数据的激活区域中定位和调整高斯神经元。学习(1)根据成本误差函数和其他停止准则,使神经元数量最小化; (2)提供快速的培训和测试过程; (3)提供了分类的准确性,这由真实信号的结果证实。该方法用于对旋转元件的机械故障进行分类,并检测和隔离化学过程中的干扰。对获得的结果进行分析,解释并与已广泛研究用于故障诊断的各种方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号