首页> 外文期刊>Neurocomputing >An efficient feature selection method for mobile devices with application to activity recognition
【24h】

An efficient feature selection method for mobile devices with application to activity recognition

机译:一种适用于活动识别的移动设备高效特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modeled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain-based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
机译:本文提出了一种数据分类的特征选择方法,该方法结合了基于模型的变量选择技术和快速的两阶段子集选择算法。指定的(和完整的)候选要素集与类别标签之间的关系是使用非线性的全回归模型(即参数线性)建模的。通过平方误差和(SSE)测得的子模型的性能用于对子模型中涉及的特征子集的信息性进行评分。两阶段子集选择算法采用局部最小化SSE的方法来求解子模型。选择解决方案子模型中涉及的功能作为支持分类的支持向量机(SVM)的输入。该算法的内存需求与训练模式的数量无关。此属性使该方法适用于物理RAM内存非常有限的移动设备中执行的应用程序。开发了用于活动识别的应用程序,该应用程序实现了所提出的特征选择算法和SVM训练过程。使用在PDA上运行的应用程序进行了实验,以使用加速度计数据识别人类活动。与基于信息增益的特征选择方法的比较证明了所提算法的有效性和效率。

著录项

  • 来源
    《Neurocomputing》 |2011年第17期|p.3543-3552|共10页
  • 作者单位

    The School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK;

    The School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK;

    The School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK;

    The School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    feature selection algorithm; data classification; activity recognition; mobile devices;

    机译:特征选择算法数据分类;活动识别;移动设备;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号