首页> 外文期刊>Neurocomputing >Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease
【24h】

Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease

机译:基于主成分分析的技术和有监督的分类方案,可早期发现阿尔茨海默氏病

获取原文
获取原文并翻译 | 示例

摘要

In Alzheimer's disease (AD) diagnosis process, functional brain image modalities such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians. However, the current evaluation of these images entails a succession of manual reorientations and visual interpretation steps, which attach in some way subjectivity to the diagnostic. In this work, a complete computer aided diagnosis (CAD) system for an automatic evaluation of the neuroimages is presented. Principal component analysis (PCA)-based methods are proposed as feature extraction techniques, enhanced by other linear approaches such as linear discriminant analysis (LDA) or the measure of the Fisher discriminant ratio (FDR) for feature selection. The final features allow to face up the so-called small sample size problem and subsequently they are used for the study of neural networks (NN) and support vector machine (SVM) classifiers. The combination of the presented methods achieved accuracy results of up to 96.7% and 89.52% for SPECTand PET images, respectively, which means a significant improvement over the results obtained by the classical voxels-as-features (VAF) reference approach.
机译:在阿尔茨海默氏病(AD)的诊断过程中,诸如单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)等功能性大脑图像模式已被广泛用于指导临床医生。然而,这些图像的当前评估需要一系列手动重新定向和视觉解释步骤,这些步骤以某种方式将主观性附加到诊断上。在这项工作中,提出了一个完整的计算机辅助诊断(CAD)系统,用于神经图像的自动评估。提出了基于主成分分析(PCA)的方法作为特征提取技术,并通过其他线性方法(例如线性判别分析(LDA)或用于特征选择的Fisher判别比(FDR)的度量)进行了增强。最终特征允许面对所谓的小样本量问题,随后将其用于神经网络(NN)和支持向量机(SVM)分类器的研究。所提出方法的组合分别对SPECT和PET图像实现了高达96.7%和89.52%的准确度结果,这意味着与经典的体素特征(VAF)参考方法所获得的结果相比有了显着改进。

著录项

  • 来源
    《Neurocomputing》 |2011年第8期|p.1260-1271|共12页
  • 作者单位

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    rnDepartment of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    rnDepartment of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Signal Theory, Networking and Communications, University of Granada, Spain;

    Department of Nuclear Medicine, Hospital Universitario Virgen de las Nieves, Granada, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    alzheimer's disease; pca; lda; supervised learning; computer-aided diagnosis system;

    机译:阿尔茨海默病;pca;lda;监督学习;计算机辅助诊断系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号