首页> 外文期刊>Neurocomputing >A group search optimization based on improved small world and its application on neural network training in ammonia synthesis
【24h】

A group search optimization based on improved small world and its application on neural network training in ammonia synthesis

机译:基于改进小世界的群搜索优化及其在氨合成神经网络训练中的应用

获取原文
获取原文并翻译 | 示例

摘要

Group search optimization (GSO) is an efficient algorithm for solving global optimization problems, in which a group of scroungers move to global best member directly causing to premature convergence. In this paper, an improved group search optimization (ISWGSO) is proposed to increase the diversity of scroungers' behavior by introducing small world scheme in complex network. In ISWGSO, each scrounger selects a subset of members as its neighbors according to small world scheme, and evolves with the effects of global best member and local best member within neighbors at each iteration. Since the neighbors of each scrounger increases after each iteration, a dynamic probability scheme is designed to keep small world property of the scroungers. Moreover, factorial design (FD) approach is used to select parameters of ISWGSO for different problems. Some numerical examples show that ISWGSO can obtain a satisfied performance in comparison with six representative algorithms on low and high dimension over 23 benchmark functions. Finally, ISWGSO is applied to train the parameters of neural networks to build a soft sensor model for inferring the outlet ammonia concentration in fertilizer plant.
机译:群组搜索优化(GSO)是解决全局优化问题的一种有效算法,在该算法中,一群笨蛋移动到全局最佳成员,直接导致过早收敛。本文提出了一种改进的组搜索优化(ISWGSO),通过在复杂网络中引入小世界方案来增加小鹿行为的多样性。在ISWGSO中,每个小精灵都会根据小世界方案选择成员子集作为其邻居,并在每次迭代时随着邻居中全局最佳成员和局部最佳成员的影响而演化。由于每个迭代器的邻居在每次迭代后都会增加,因此设计了一种动态概率方案来保持该迭代器的小世界属性。此外,因子设计(FD)方法用于针对不同问题选择ISWGSO的参数。一些数值示例表明,与6种代表性算法相比,ISWGSO可以在23种基准函数的低维和高维上获得满意的性能。最后,将ISWGSO应用于神经网络的参数训练,以建立一个软传感器模型来推断化肥厂的出口氨浓度。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.94-107|共14页
  • 作者

    Xingdi Yan; Wen Yang; Hongbo Shi;

  • 作者单位

    Key laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China;

    Key laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China;

    Key laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    croup search optimization; small world topology; neural network; ammonia synthesis;

    机译:croup搜索优化;小世界拓扑;神经网络;氨合成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号