首页> 外文会议>International Work-Conference on Artificial Neural Networks >Multi-mother Wavelet Neural Network Training Using Genetic Algorithm-Based Approach to Optimize and Improves the Robustness of Gradient-Descent Algorithms: 3D Mesh Deformation Application
【24h】

Multi-mother Wavelet Neural Network Training Using Genetic Algorithm-Based Approach to Optimize and Improves the Robustness of Gradient-Descent Algorithms: 3D Mesh Deformation Application

机译:基于遗传算法的多母波小波神经网络训练优化和提高梯度下降算法的鲁棒性:3D网格变形应用

获取原文

摘要

This paper presents the implementation of genetic algorithm which aims at searching for an optimal or near optimal solution to the deformation 3D objects problem based on multi-mother wavelet neural network training. First, we introduce the problem of 3D high mesh deformation using Multi-Mother Wavelet Neural Network architecture (MMWNN). Furthermore, gradient training limits of wavelet networks are characterized by their inability to evade local optima. The idea is to integrate genetic algorithms into the wavelet network to avoid both insufficiency and local minima in the 3D mesh deformation technique. Simulation results validate the generalization ability and efficiency of the proposed network based on genetic algorithms (MMWNN-GA). Thus the significant improvement of the performances in terms of quality of 3D meshes deformation.
机译:本文提出了遗传算法的实现,该算法旨在基于多母小波神经网络训练来寻找变形3D对象问题的最优或接近最优解。首先,我们介绍使用多母小波神经网络架构(MMWNN)进行3D高网格变形的问题。此外,小波网络的梯度训练极限的特征在于它们无法逃避局部最优。想法是将遗传算法集成到小波网络中,以避免3D网格变形技术的不足和局部最小值。仿真结果验证了基于遗传算法(MMWNN-GA)的网络的泛化能力和效率。因此,就3D网格变形的质量而言,性能的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号