首页> 外文期刊>Neurocomputing >Exploring multi-modality structure for cross domain adaptation in video concept annotation
【24h】

Exploring multi-modality structure for cross domain adaptation in video concept annotation

机译:在视频概念注释中探索用于跨域自适应的多模式结构

获取原文
获取原文并翻译 | 示例

摘要

Domain adaptive video concept detection and annotation has recently received significant attention, but in existing video adaptation processes, all the features are treated as one modality, while multi-modalities, the unique and important property of video data, is typically ignored. To fill this blank, we propose a novel approach, named multi-modality transfer based on multi-graph optimization (MMT-MG0) in this paper, which leverages multi-modality knowledge generalized by auxiliary classifiers in the source domains to assist multi-graph optimization (a graph-based semi-supervised learning method) in the target domain for video concept annotation. To our best knowledge, it is the first time to introduce multi-modality transfer into the field of domain adaptive video concept detection and annotation. Moreover, we propose an efficient incremental extension scheme to sequentially estimate a small batch of new emerging data without modifying the structure of multi-graph scheme. The proposed scheme can achieve a comparable accuracy with that of brand-new round optimization which combines these new data with the data corpus for the nearest round optimization, while the time for estimation has been reduced greatly. Extensive experiments over TRECVID2005-2007 data sets demonstrate the effectiveness of both the multi-modality transfer scheme and the incremental extension scheme.
机译:领域自适应视频概念的检测和注释最近受到了广泛的关注,但是在现有的视频自适应过程中,所有功能都被视为一种模式,而视频数据的独特和重要属性多模式通常被忽略。为了填补这一空白,我们在本文中提出了一种新颖的方法,即基于多图优化的多模态传递(MMT-MG0),它利用了源域中辅助分类器归纳的多模态知识来辅助多图。视频概念注释的目标领域中的优化(基于图的半监督学习方法)。据我们所知,这是第一次将多模式传输引入领域自适应视频概念检测和注释领域。此外,我们提出了一种有效的增量扩展方案,可以在不修改多图方案结构的情况下,顺序估算一小批新出现的数据。所提出的方案可以达到与全新轮次优化的精度相当的精度,后者将这些新数据与用于最近轮次优化的数据语料相结合,同时大大减少了估计时间。在TRECVID2005-2007数据集上进行的大量实验证明了多模式传输方案和增量扩展方案的有效性。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.11-21|共11页
  • 作者单位

    Institute of Computing Technology, Chinese Academy of Sciences, 617H, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District, Beijing 100190, PR China,Graduate University of Chinese Academy of Sciences, Beijing 100190, PR China;

    Institute of Computing Technology, Chinese Academy of Sciences, 617H, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District, Beijing 100190, PR China;

    Institute of Computing Technology, Chinese Academy of Sciences, 617H, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District, Beijing 100190, PR China;

    Institute of Computing Technology, Chinese Academy of Sciences, 617H, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District, Beijing 100190, PR China;

    Institute for Infocomm Research (I2R), 138632. Singapore, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    multi-modality transfer; domain adaptive video annotation; multi-graph optimization; incremental extension;

    机译:多式联运;域自适应视频注释;多图优化增量扩展;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号