首页> 外文期刊>Multimedia Tools and Applications >Cross-domain structural model for video event annotation via web images
【24h】

Cross-domain structural model for video event annotation via web images

机译:通过网络图像进行视频事件注释的跨域结构模型

获取原文
获取原文并翻译 | 示例

摘要

Annotating events in uncontrolled videos is a challenging task. Most of the previous work focuses on obtaining concepts from numerous labeled videos. But it is extremely time consuming and labor expensive to collect a large amount of required labeled videos for modeling events under various circumstances. In this paper, we try to learn models for video event annotation by leveraging abundant Web images which contains a rich source of information with many events taken under various conditions and roughly annotated as well. Our method is based on a new discriminative structural model called Cross-Domain Structural Model (CDSM) to transfer knowledge from Web images (source domain) to consumer videos (target domain), by jointly modeling the interaction between videos and images. Specifically, under this framework we build a common feature subspace to deal with the feature distribution mismatching between the video domain and the image domain. Further, we propose to use weak semantic attributes to describe events, which can be obtained with no or little labor. Experimental results on challenging video datasets demonstrate the effectiveness of our transfer learning method.
机译:对不受控制的视频中的事件进行注释是一项艰巨的任务。以前的大部分工作都集中于从众多带有标签的视频中获取概念。但是,收集大量必需的带标签的视频以在各种情况下对事件进行建模非常耗时且耗费人力。在本文中,我们尝试通过利用丰富的Web图像来学习视频事件注释的模型,该Web图像包含丰富的信息源,并且在不同条件下也会发生许多事件,并且还会对其进行大致注释。我们的方法基于称为跨域结构模型(CDSM)的新判别结构模型,通过联合建模视频和图像之间的交互作用,将知识从Web图像(源域)转移到消费者视频(目标域)。具体而言,在此框架下,我们构建了一个公共特征子空间,以处理视频域和图像域之间的特征分布不匹配。此外,我们建议使用弱语义属性来描述事件,无需或只需很少的劳动即可获得事件。具有挑战性的视频数据集的实验结果证明了我们的迁移学习方法的有效性。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2015年第23期|10439-10456|共18页
  • 作者单位

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Video annotation; Knowledge transfer; Video analysis;

    机译:视频注释;知识转移;视频分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号