首页> 外文期刊>Neurocomputing >Capturing correlations of multiple labels: A generative probabilistic model for multi-label learning
【24h】

Capturing correlations of multiple labels: A generative probabilistic model for multi-label learning

机译:捕获多个标签的相关性:用于多标签学习的生成概率模型

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed a considerable surge of interest in the multi-label learning problem. It has been shown that a key factor for a successful multi-label learning algorithm is to effectively exploit relations between labels. However, most of the previous work exploiting label relations focuses on pairwise relations. To handle the situations where there are intrinsic correlations among multiple labels, in this paper, we propose a generative model, Labeled Four-Level Pachinko Allocation Model (L-F-L-PAM), to capture correlations among multiple labels. In our approach of multi-label learning on text data, we apply the proposed model for inferring the training data and the standard Four-Level Pachinko Allocation Model for the test data. Furthermore, we propose a pruned Gibbs Sampling algorithm in the test stage to reduce the inference time. Finally, extensive experiments have been performed to validate the effectiveness and efficiency of our new approach. The results demonstrate significant improvements of our model over Labeled LDA (L-LDA) and superiority in terms of both effectiveness and computational efficiency over other high-performing multi-label learning methods.
机译:近年来,目睹了对多标签学习问题的极大兴趣。已经表明,成功的多标签学习算法的关键因素是有效利用标签之间的关系。但是,先前大多数利用标签关系的工作都集中在成对关系上。为了处理多个标签之间存在内在相关性的情况,在本文中,我们提出了一种生成模型,即标记四级弹珠机分配模型(L-F-L-PAM),以捕获多个标签之间的相关性。在我们对文本数据进行多标签学习的方法中,我们将所建议的模型用于推断训练数据,并将标准的四级Pachinko分配模型应用于测试数据。此外,我们在测试阶段提出了一种经过修剪的Gibbs采样算法,以减少推理时间。最后,已经进行了广泛的实验以验证我们新方法的有效性和效率。结果表明,我们的模型相对于标记的LDA(L-LDA)进行了重大改进,并且在有效性和计算效率方面均优于其他高性能的多标签学习方法。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|116-123|共8页
  • 作者单位

    Computer Science Department, University of Science and Technology of China (USTC), China;

    Computer Science Department, University of Science and Technology of China (USTC), China;

    Computer Science Department, University of Science and Technology of China (USTC), China;

    Management Science and Information Systems Department, Rutgers University, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-label learning; Ranking; Label correlation; Generative model;

    机译:多标签学习;排行;标签相关性;生成模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号