首页> 外文期刊>Neurocomputing >Reconstructive discriminant analysis: A feature extraction method induced from linear regression classification
【24h】

Reconstructive discriminant analysis: A feature extraction method induced from linear regression classification

机译:重构判别分析:基于线性回归分类的特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

Based on linear regression, a novel method called reconstructive discriminant analysis (RDA) is developed for feature extraction and dimensionality reduction (DR). RDA is induced from linear Regression classification (LRC). LRC assumes each class lies on a linear subspace and finds the nearest subspace for a given sample. But the original space cannot guarantee that the given sample matches its nearest subspace. RDA is designed to make the samples match their nearest subspaces. Concretely, RDA characterizes the intra-class reconstruction scatter as well as the inter-class reconstruction scatter, seeking to find the projections that simultaneously maximize the inter-class reconstruction scatter and minimize the intra-class reconstruction scatter. Actually, RDA can also be seen as another form of classical linear discriminant analysis (LDA) from the reconstructive view. The proposed method is applied to face and finger knuckle print recognition on the ORL, extended YALE-B, FERET face databases and the PolyU finger knuckle print database. The experimental results demonstrate the superiority of the proposed method.
机译:基于线性回归,开发了一种称为重构判别分析(RDA)的新颖方法,用于特征提取和降维(DR)。 RDA是由线性回归分类(LRC)引起的。 LRC假定每个类都位于线性子空间上,并找到给定样本的最近子空间。但是原始空间不能保证给定的样本与其最近的子空间相匹配。 RDA旨在使样本与其最近的子空间匹配。具体地,RDA表征了类内重构散点以及类间重构散点,试图找到同时最大化类间重构散点和最小化类内重构散点的投影。实际上,从重构的观点来看,RDA还可以看作是经典线性判别分析(LDA)的另一种形式。将该方法应用于ORL,扩展的YALE-B,FERET人脸数据库和PolyU指关节指纹数据库上的人脸和指关节指纹识别。实验结果证明了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号