首页> 外文期刊>Biomedical signal processing and control >Intent recognition of torso motion using wavelet transform feature extraction and linear discriminant analysis ensemble classification
【24h】

Intent recognition of torso motion using wavelet transform feature extraction and linear discriminant analysis ensemble classification

机译:小波变换特征提取与线性判别分析集成分类的躯干运动意图识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a multi-sensor, multi-classifier approach for intent recognition of human torso motion is presented. A linear discriminant analysis based classifier is used, and the extraction of time-frequency domain features through the use of the wavelet transform is discussed. In addition, a weighted multi classifier combination method for combining outputs of multiple classifiers into a single coherent output is implemented. The approach was evaluated on physiological data collected from three human participants. Results show up to 97% accuracy in classifying flexion and extension motions of the torso. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种用于人体躯干运动意图识别的多传感器,多分类器方法。使用基于线性判别分析的分类器,并讨论了通过小波变换提取时频域特征的方法。另外,实现了用于将多个分类器的输出组合成单个相干输出的加权多分类器组合方法。该方法是根据从三个人类参与者那里收集的生理数据进行评估的。结果显示,对躯干的屈伸运动进行分类的准确性高达97%。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号