首页> 外文期刊>Neurocomputing >Coupling time decoding and trajectory decoding using a target-included model in the motor cortex
【24h】

Coupling time decoding and trajectory decoding using a target-included model in the motor cortex

机译:使用运动皮质中包含目标的模型对时间进行解码和轨迹解码

获取原文
获取原文并翻译 | 示例

摘要

Significant progress has been made within the last decade in motor cortical decoding that predicts movement behaviors from population neuronal activity in the motor cortex. A majority of these decoding methods have focused on estimating a subject's hand trajectory in a continuous movement. We recently proposed a time identification decoding approach and showed that if a stereotyped movement is well represented by a sequence of targets (or landmarks), then the main structure of the movement can be reconstructed by detecting the reaching times at those targets. Both trajectory decoding and landmark-time decoding have their particular advantages, whereas a coupling of these two different strategies has not been examined. In this article we propose a synergy that comes from combining these two approaches for a stereotyped movement under a linear state-space framework. We develop a new decoding procedure based on a forward-backward propagation where the target is used in the initial stage in the backward step. Experimental results show that the new method significantly improves decoding accuracy over the non-target-included models. Furthermore, the coupling based on the new target-included method effectively combines the time decoding and trajectory decoding and further improves the decoding accuracy.
机译:在过去的十年中,运动皮层解码已经取得了重大进展,该运动皮层解码通过运动皮层中的种群神经元活动预测运动行为。这些解码方法中的大多数集中于估计连续运动中的对象的手轨迹。我们最近提出了一种时间识别解码方法,并表明,如果定型运动由一系列目标(或地标)很好地表示,则可以通过检测这些目标的到达时间来重构运动的主要结构。轨迹解码和界标时间解码都具有其特殊的优点,而这两种不同策略的耦合尚未得到检验。在本文中,我们提出了一种协同作用,该协同作用是将这两种方法结合起来用于线性状态空间框架下的定型运动。我们基于前向-后向传播开发了一种新的解码过程,其中在后向步骤的初始阶段使用目标。实验结果表明,与不包含目标的模型相比,该新方法显着提高了解码精度。此外,基于新的目标包含方法的耦合有效地将时间解码和轨迹解码结合在一起,并进一步提高了解码精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号