首页> 外文期刊>Neurocomputing >High-level attributes modeling for indoor scenes classification
【24h】

High-level attributes modeling for indoor scenes classification

机译:室内场景分类的高级属性建模

获取原文
获取原文并翻译 | 示例

摘要

Scene classification is a challenging problem in computer vision. Though conventional methods show good performance in recognizing outdoor scenes, these methods does not work well in indoor scenes recognition. In recent years, high level image representations consisted of semantic attribute information has been introduced to solve this problem. However, a key technical challenge for these representations is the "curse of dimensionality", caused by the large numbers of objects and high dimensionality of the response vector for each object. In this paper, we propose a hypergraph learning algorithm based feature selection method for indoor scene classification. It performs feature selection by hypergraph regulariza-tion, which not only considers the interaction among features but also the interaction between the feature selection heuristics and the corresponding classifier. For the convenience of the prediction of the new images, a liner regression model is integrated in the framework, making the new images classification directly and in real time. The experimental results show that our approach has satisfactory performance compared with previously proposed methods.
机译:场景分类是计算机视觉中一个具有挑战性的问题。尽管常规方法在识别室外场景中表现出良好的性能,但是这些方法在室内场景识别中效果不佳。近年来,已经提出了由语义属性信息组成的高级图像表示来解决该问题。但是,这些表示的关键技术挑战是“维数的诅咒”,这是由大量对象和每个对象的响应向量的高维引起的。本文提出了一种基于超图学习算法的室内场景分类特征选择方法。它通过超图正则化执行特征选择,它不仅考虑了特征之间的相互作用,而且还考虑了特征选择启发法与相应分类器之间的相互作用。为了方便新图像的预测,在框架中集成了线性回归模型,可以直接对新图像进行实时分类。实验结果表明,与先前提出的方法相比,我们的方法具有令人满意的性能。

著录项

  • 来源
    《Neurocomputing》 |2013年第9期|337-343|共7页
  • 作者

    Chaojie Wang; Jun Yu; Dapeng Tao;

  • 作者单位

    Computer Science Department, School of information Science and Engineering, Xiamen University, Xiamen 361005, China;

    Computer Science Department, School of information Science and Engineering, Xiamen University, Xiamen 361005, China;

    School of Electronic and Information Engineering, South China University of Technology, GuangZhou, China, 510640;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scene classification; Indoor; Attribute; Semantic; Feature selection; Hypergraph learning;

    机译:场景分类;室内;属性;语义功能选择;超图学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号