首页> 外文期刊>Neurocomputing >Global robust stability analysis for BAM neural networks with time-varying delays
【24h】

Global robust stability analysis for BAM neural networks with time-varying delays

机译:具有时变时滞的BAM神经网络的全局鲁棒稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the problem of global robust asymptotical stability of the equilibrium point for bidirectional associative memory (BAM) neural networks. The activation functions are assumed to be neither differentiable nor strict monotonic and the delays are time-varying. Furthermore, based on the approach of linear matrix inequality (LMI), a new inequality and Lyapunov-Krasovskii functional are applied to derive the results of robust asymptotical stability. Also, a simulation example is presented to demonstrate the effectiveness and applicability of our results.
机译:本文关注双向联想记忆(BAM)神经网络平衡点的全局鲁棒渐近稳定性问题。假设激活函数既不可微,也不严格单调,并且延迟是随时间变化的。此外,基于线性矩阵不等式(LMI)的方法,将一个新的不等式和Lyapunov-Krasovskii泛函用于得出鲁棒渐近稳定性的结果。此外,还提供了一个仿真示例来证明我们的结果的有效性和适用性。

著录项

  • 来源
    《Neurocomputing》 |2013年第23期|499-503|共5页
  • 作者

    Xiaolin Li; Jia Jia;

  • 作者单位

    Department of Mathematics, Shanghai University, Shanghai 200444, China;

    Department of Mathematics, Shanghai University, Shanghai 200444, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BAM neural networks; Robust stability; Linear matrix inequality;

    机译:BAM神经网络;稳定的稳定性;线性矩阵不等式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号