首页> 外文期刊>Neurocomputing >New image descriptors based on color, texture, shape, and wavelets for object and scene image classification
【24h】

New image descriptors based on color, texture, shape, and wavelets for object and scene image classification

机译:基于颜色,纹理,形状和小波的新图像描述符用于对象和场景图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wavelet transform with further computation of the Histograms of Oriented Gradients (HOG) for encoding shape and local features. Second, a novel H-descriptor, which integrates the 3D-LBP and the HOG of its wavelet transform, is presented to encode color, texture, shape, as well as local information. Feature extraction for the H-descriptor is implemented by means of Principal Component Analysis (PCA) and Enhanced Fisher Model (EFM) and classification by the nearest neighbor rule for object and scene image classification. And finally, an innovative H-fusion descriptor is proposed by fusing the PCA features of the H-descriptors in seven color spaces in order to further incorporate color information. Experimental results using three datasets, the Caltech 256 object categories dataset, the UIUC Sports Event dataset, and the MIT Scene dataset, show that the proposed new image descriptors achieve better image classification performance than other popular image descriptors, such as the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), Spatial Envelope, Color SIFT four Concentric Circles (C4CC), Object Bank, the Hierarchical Matching Pursuit, as well as LBP.
机译:本文提出了基于颜色,纹理,形状和小波的新图像描述符,用于对象和场景图像分类。首先,提出了一种新的三维局部二进制图案(3D-LBP)描述符,该描述符生成三个新的彩色图像,用于对图像的颜色和纹理信息进行编码。然后将3D-LBP图像与原始彩色图像一起进行Haar小波变换,并进一步计算定向梯度直方图(HOG)以对形状和局部特征进行编码。其次,提出了一种新颖的H描述符,它将3D-LBP和其小波变换的HOG集成在一起,以对颜色,纹理,形状以及局部信息进行编码。 H描述符的特征提取通过主成分分析(PCA)和增强型Fisher模型(EFM)进行,并通过最近邻规则进行分类,以进行对象和场景图像分类。最后,通过在七个颜色空间中融合H描述符的PCA特征,提出了一种创新的H融合描述符,以进一步整合颜色信息。使用三个数据集(加州理工学院256个对象类别数据集,UIUC体育赛事数据集和MIT场景数据集)进行的实验结果表明,所提出的新图像描述符比其他流行的图像描述符(例如尺度不变特征变换)具有更好的图像分类性能。 (SIFT),视觉单词的金字塔直方图(PHOW),定向梯度的金字塔直方图(PHOG),空间包络,彩色SIFT四个同心圆(C4CC),对象库,层次匹配追踪以及LBP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号